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Computing Self-Intersections of Closed Geodesics 
on Finite-Sheeted Covers of the Modular Surface 

By J. Lehner and M. Sheingorn* 

Abstract. An algorithm is given for deciding whether a closed geodesic on a finite-sheeted 
cover of the modular surface has self-intersections; if it does, the algorithm gives them in the 
order they occur in traversing the geodesic. The following general result on geodesics is 
proved: any closed geodesic on a Riemann surface R can be lifted to a simple closed geodesic 
on some finite-sheeted cover of R. In the last two sections the connection with the stabilizer 
(under the modular group) of a Markov quadratic irrationality is discussed. 

0. Introduction. The main object of this paper is to give an algorithm for deciding 
whether a closed geodesic on a finite-sheeted cover of the modular surface has 
self-intersections, and if it does, to give them in the order they occur in traversing the 
geodesic. Birman and Series [3], [4] have a very different approach to this problem, 
which has yielded nice insights for many Riemann surfaces. 

Let 17(1) = PSL(2, Z) be the modular group and S1 = H+/J'(1) the modular 
surface, where H+ is the upper half-plane. If F c 17(1) is of finite index, then 
S = He/F is a finite-sheeted cover of S1, and conversely. Let a E 17(1) be a 
primitive hyperbolic transformation and A, its axis. A0/J'(1) is a closed geodesic on 
S,; conversely, every such geodesic lifts to a conjugacy class of axes of primitive 
hyperbolics in F(1). But because r is of finite index, a k is in F for some k. Hence A0 
projects to a closed geodesic on S as well, and this geodesic covers A0/F(1) on S1. 
Every closed geodesic arises in this way. 

Theorem 2.1, which led to our algorithm, provides a relationship between these 
projections: 

THEOREM 2.1. Let L be a closed geodesic on a Riemann surface R. Then there is a 
finite-sheeted cover S of R with the property that- L lifts to a simple closed geodesic on 
S. 

It should be noted that there are no nontrivial simple closed geodesics on S1, so 
the theorem is never vacuous in that case. For the surface S, and with S a principal 
congruence subgroup, we had an explicit proof of this result. Morris Newman [7] 
provided a key algebraic result that made the generalization possible. The proof is in 
Section 2. 

We arrived at the algorithm while searching for simple closed geodesics (scg) on 
the surface H+/J'(3). This is a sphere with 4 punctures and there are infinitely many 
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homotopy classes, each containing a unique scg. The index of F(3) in F(1) is 12, so 
the fundamental region (FR) for I(3) consists of 12 copies of the FR for I7(1). But in 
the algorithm all the geometry takes place in the FR of I7(1), with its 3 sides at great 
remove from the real axis. All "irrational" calculation pertains only to this FR. All 
other calculations involve only integer arithmetic. We believe this is a distinct 
advantage-one that can be exploited whenever we have a specific subgroup of 
finite index. The algorithm appears in Section 1. 

In our work on F(3) we are given the endpoints of a hyperbolic axis, i.e., conjugate 
quadratic irrationals a, a, but what we need is the primitive hyperbolic transforma- 
tion of F(1) fixing a and a-. This calculation, involving the smallest positive solution 
of a certain Pell equation, is probably well-known, but we could not find it in the 
literature. It is the subject of Section 3. 

To describe the last section, we must define the Markov spectrum (MS) and 
Markov quadratic irrationalities (MQI). Hurwitz proved that for every irrational a 
the inequality 

(0.1) a-- < 
q ~F5 q2 

is satisfied by infinitely many reduced fractions and that i,u = F5 is best possible. 
The value V5 is attained for a - A, = (1 + V5)/2, the equivalence being under the 
extended modular group (determinant ? 1). For a - we can get (0.1) with I, 
replaced by M2 = F8 and this is attained for a X2= 1 + V. The numbers ,ti 
increase monotonically to 3; they constitute the MS. 

The X, are the MQI. They can be described as follows. Consider the Diophantine 
equation 
(0.2) x2+y2+z2=3xyz, 1<x< y<z 
Ordering its solutions by the size of z, we have 

4 1 y, 1 _4 
(0.3) i X + + 9 / 

z 2 ~ 2 x,z, 

(Here we assume the well-known conjecture that z, determines xi and yi uniquely.) 
See Koksma [6, Chapter 3] for all of this. 

Halting the algorithm for a given hyperbolic a E F(1) depends on finding the least 
positive ko = k for which ak E F. When F = F(3) we have F(1)/F(3) A4, the 
alternating group on 4 letters. Since A4 has no elements of order 4, 6, or 12, we have 
k = 1, 2, or 3 [8, p. 31]. Our computations, however, suggested that for a fixing X,, 
an MQI, k = 2. In Section 4 we prove that, for such a, k < 2, and that proving 
k = 2 depends on a congruence property of the smallest solution of the correspond- 
-ing Pell equation. 

Lastly, we mention that using our algorithm on various Xi suggested the conjec- 
ture: 

(0.4) A,,A projects to a simple closed geodesic on H+/I(3) 

(0.4) if and only if a fixes a MQI. 
Using methods of number theory, topology, and differential geometry we were 
subsequently able to prove this conjecture. (See [2].) Combined with an asymptotic 
formula for the number of zi < X given by Zagier [10], (0.4) gives upper and lower 
bounds for the number of scg on H+/T'(3) whose hyperbolic length is q X. 
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1. An Algorithm for Finding Self-Intersections of a Closed Geodesic on a Modular 
Surface of Finite Index in F(1). We shall assume that the closed geodesic is given as 
the axis of an explicit hyperbolic transformation A. We can also assume the axis 
intersects the standard fundamental region (SFR) for F(1), entering at a point z0 
that lies on a vertical side of the SFR. This can be achieved by an effective 
conjugation of A. Thus we have fixed points of A, (A A that satisfy (A- > 1. 

Since our surface is of finite index, there is a least positive integer nA = n such 
that An E F. Our implementations of this algorithm test each integer n = 1, 2, 3,... 
to see if An E F. For many subgroups of F(1) there is a very simple membership test 

(Rankin [8, pp. 63-65]). 
We now have determined A, n = nA' , = AI A and ' = (. We are going to follow 

the axis from z0 towards An(z0). As we first pass out of the SFR at zl, say, we 
determine which of S = (1, 1: 0, 1), S- 1, or T = (0, - 1: 1, 0) returns the path (from 
z1 towards An(z0)) to the SFR. Call this L1. Apply L1 to the axis of A; the image 
enters the SFR at Ll(zl) and moves towards L1 o An(zo). Again we leave the SFR at 
Z2 and map the segment proceeding from Z2 towards L1 o An(zo) back to the SFR by 
L2, one of S, S-1, or T. Continuing in this way, we obtain a sequence { Lj}, 
j = 1,...,k = k(An). Furthermore, A n= Lk o Lk1l O ... o L2 o Ll, since the seg- 
ments emanating from z0 and An(zo) are F-equivalent and a fortiori F(l)-equivalent. 
Because of the relation (TS)3 = I, there are many representations of An as a word in 
the generators S and T, but the word obtained as above is about as short as possible 
(Beardon [1, Theorem 5]). 

Our first task is to determine the L's. We assume we are proceeding from z0 to (, 
the other case being no different. Find m such that m - 2 < ( < m + 2. By our 
normalization, m < 0. Proceeding from z0 towards J, we have imj or imj - 1 
instances of S to begin our sequence of L's, according as we are in case (a) or (b) in 
Figure 1: 

~~~~ + n-2 

FIGURE 1 (a) 
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FIGURE 1 (b) 

Determining the intersection of the axis with x = m + 2 (solving a quadratic 
equation) distinguishes the cases. We include the limiting case in which the intersec- 
tion occurs at height F' /2 in case (b). 

After this initial string of S 's, the next L is of course T. Calculate T o SImI(* ) - 

and T o SImI( t) = t, and determine whether or not 4 < . We know we are 
continuing from z1 towards 41. Now just as with our analysis from zo, we obtaifi a 
sequence of transformations S or S-1 according as 4l < or not. The number of 
L's in this sequence is Imll or Imll - 1, where ml - <1< m + , as before. 
The next L is T. 

We continue in this way until (t= ( and (t'= (' in this order. (Note that if 
= (', ,t' = ( occurs, it means that the axis has fixed points of order 2 on it.) Up to 

this point we have determined L1,.. .L Lt and- we know-tiraA L Lt L ** L1, since 
the product fixes (, (' and is primitive because (t = t, (t' = t' does not occur earlier. 
The full sequence of L's is just L1,... ,Lt repeated n-times. 

Next, define Qk = Lk o ... o L1. We see that Qk maps a segment of the axis 
between zo and A(zo) into the SFR. These Qk are the only elements of F(1) with this 
property. This means that if /3 and /3' lie in the segment of the axis between zo and 
A(zo) with / nearer zO, and /3 is F(l)-equivalent to /3', then Qk(Il) = Qj(/') for 
somej > k. Thus /3 = Q-1 o Qj(P I). 

Now we compute all Q,1 o Qj, nt > j > k, and check for F(l)-self-intersections. 
This involves computing k j:= Qk1 o Qj(t) and "j:= Qkj o Qj(t') and checking 
for the following 4 incidence patterns (recall t < 

i ik,j i ik,j k,j kjFi Gk,j 

k,J i ik,ji ik,ji k,j i 

FIGURE 2 
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If a self-intersection occurs, compute it to make sure it lies in [z0, AnZo]-this avoids 
finding the same intersection more than once. We now have a set of self-intersections 
ordered by the distance of f8 from z0. This sequence actually gives all F(1)-intersec- 
tions in the order they occur in traversing the axis from z0 to An(Zo), which is 
n-times around the curve A/F(1). 

Finally, to find F-intersections, simply check which of the F(l)-intersections have 
k-o Qj E r. The efficacy of this algorithm lies in the fact that the geometry is 

carried out on the SFR of F(1) with its 2 simple identifications and 4 long sides 
whose 3 vertices are far from the real axis. F enters only in that one needs to check 
membership therein-an integer arithmetic problem for many congruence sub- 
groups. This is much preferable to dealing with a fundamental region with many 
short sides and closely-spaced vertices near the real axis, as the algorithm of 
Poincare requires [9, pp. 192-194]. 

2. Proof of the Lifting Theorem. As we have said, this theorem relies on a result of 
M. Newman. 

THEOREM 2.2. Let F be a Fuchsian group, (tal,... ,I k} a finite subset of F not 
containing 1, y E F such that yafi = a1iy, 1 < i < k. Then there is a subgroup IF, of F 
such that (r ',) < 0o, y E IF, ai 1 IF, i = 1,.. . ,k. 

Proof of Theorem 2.1. Let the Riemann surface R = Hf/F, where F is a Fuchsian 
group, and let -r: H-*+ R be the projection map. Let L be a closed geodesic in R. 
We observe that L can have only finitely many self-intersections, since a geodesic on 
a surface of constant negative curvature is a real analytic curve. Now L lifts to a 
countable set of axes of primitive hyperbolic elements in F. Let -y be one such with 
axis Ay 

Choose a point a on AY such that fr(a) is not a self-intersection of L, and let 
b = y(a). As we move from a to b along AY, the projection traverses L once. Also, 
moving from a to b we pass through finitely many fundamental regions of F. Hence 
there are at most finitely many 1 * a1i E F with cai(z) = z'; z, z' E [a, b). Note that 
ciay * ya1, as else ai and -y would have the same fixed points, implying that ai = y m, 
m # 0. This is not possible, as z, z' E [a, b). 

Now apply Theorem 2.2, obtaining a finite-index subgroup F' of F that contains y 
but excludes { ai }. Clearly y is primitive also in F'. On the surface S:= H+/F1, the 
axis Ay projects to a closed geodesic L1 and L1 is described once as AY is traversed 
from a to b. 

We claim that AY/F1 is simple. If not, there is a a E F' with 

(2.1) Af =A G(A-Y) n A',=* 0 . 

In particular, a = 1. Let a(Ay) n Ay = z, E H+. Without loss of generality, z1 
E [a, b). 

Let zl = a(z2) with Z2 E A',' There exist integers m, n such that ym(zl), yn(z2) = 

yno a-1(zl) E [a, b). Since they are F1-equivalent and both lie in [a, b), Theorem 
2.2 forces yn 0 a-l =Y , or 

(2.2) l n-m = 



238 J. LEHNER AND M. SHEINGORN 

Whether n = m or n = m, this contradicts (2.1). Finally, since F, c F, Ay/F1 covers 

Ay/F. 

3. Constructing a Generator for the F(l)-Stabilizer of a Quadratic Irrationality. 

THEOREM 3.1. Let a be a quadratic irrationality whose primitive polynomial is 

(3.1) a2Z2 + a1z + a0 = 0, a2 * 0, (a2, a1, a0) = 1 

Then the F(1)-stabilizer of a is generated by 

L - Ka, - 
Ka0 

(3.2) L + Ka2 

Ka 2 L2 
a 

2 

where (L, K ) is the positive solution of the Pell equation 

K (al - 4aOa2) + 4 = L 

with minimal K (and thus minimal L). 

Remark. In what follows, we are regarding F(1) as a transformation group, i.e., we 

identify V E F(1) with - V. 
Proof. Every quadratic polynomial with roots a, a- is of the form 

ua2x2 +ualx+uao=O, uO, 

and conversely. 
Now suppose V = (a, b: c, d) E F(1) has fixed points ai, c-. Then 

cat2 +(d - a)a - b = 0. 

Hence, 

(3.3) c=Ka2, d-a=Kal, -b =Kao, K*O, 

where clearly K is rational. Let K = K1/K2, (K1, K2) = 1. We have K2c =Ka2, 

yielding K2 1 a2. Similarly, K2 1 a,, K2 1 ao. Since (a2, al, ao) = 1, we must have 

K2 = 1, i.e., K E Z. Hence, every V = (a, b: c, d) e F(1) with fixed points a, ci 
satisfies (3.3) with an integer K. Furthermore, there exists an integer L such that 

(3.4) K2(al -4aOa2) + 4 = L2. 

The last statement is proved as follows. We have 

(a + d)2-(a-d)2 = 4 + 4bc = 4-4K2aOa2, 

(a + d)2 = 4 + K2(a2 - 4aoa2) =2 

for an integer L, since a + d E Z. Note that Ka1 and L have the same parity. 

Conversely, if a, b, c, d E Z satisfy (3.3) and (3.4) for some integers K, L, then 

V = (a, b: c, d) E F(1) and has fixed points a, i6. This is easily checked. So we have 

LEMMA 3.2. The subgroup ,a consists of the V E F satisfying (3.1) and (3.2). Here 

we have written F for F(1). 
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An element of Ia is therefore of the form (3.2), where we may assume K, L > O. 
Let L1 be the smallest solution of (3.4) and write K1 for the corresponding K. Let 

( (L1 - Ka1)/2 -Klao 
Ka2 (L1 + Kja1)/2 

We shall show that V1 generates Fa. 

LEMMA 3.3. Let A = (a, /3: y, 8) e SL(2, R) be hyperbolic. Then, 

(3.5) An = uA + vnI, vn = -Un, n > 0; uo = 0, vo =1, 

u =2n-1sinhn0/sinh6, n > 1, 0 >O, 

where 0 is defined by 

a + 8 = +2cosh6. 

The proof is by induction on n, using A2 = (a + 8)A - I. 
Proceeding with the proof of the theorem, we let W be a generator of the cyclic 

group ra, where, as noted above, we regard F as a transformation group. Then 

= 
(Lo -Koal)/2 -Koao 

\ K0a2 (Lo + Koal)12 

for a solution (KO, Lo) of (3.4). Suppose V1 = Wn, n > 1. Then, by Lemmas 3.2 and 
3.3, 

IKja21 = IunKoa2l = 2n-1 sinh n 
IKoa21, 1K1j > IKOI. 

By hypothesis IK,1 < IKo l hence IK11 = IKol which implies n = 1. That is, V1 = W, 
a generator. This concludes the proof of Theorem 3.1. 

4. The Exponent of a Markov Quadratic Irrationality. A Markov quadratic 
irrationality (MQI) is a number of the form 

(4.1) =0 2 + 9 + 
2 XZ 2 z 2 

where x, y, z (x < y < z) is a Markov triple. Writing out the equation satisfied by a 
and cancelling common factors in the coefficients, we find, by comparison with (3.1), 
that 

(4.2) a xz a x(xz + 2y) -2x2z + 4xy-z 
(4.2) w 2 (v2)t a1- (z 2) xa 2) 

Here we have used the coprimality of x, y, z in pairs (Cassels [5, p. 28]). 
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Now (4.2) and Theorem 3.1 give 

THEOREM 4.1. With a as in (4.1) we have that the primitive matrix Ba generating the 
stabilizer of a in F(1) is 

L + x(2y + xz)K K(2X2Z - 4xy + 

(4.3) ~~x 2zKd1' 
L -x(2y +xz)K 

where d = (z, 2). L and K are defined as in Theorem 3.1; explicitly K (and therefore L) 
is the minimal positive solution of the Pell equation 

(4.4) x4(9z2 - 4)d-2K2 + 4 = L2 

Moreover, the smallest power of Ba lying in F(3) is 1 or 2 according as (3, K) = 3 or 1. 

12%1oef. ONzI,z% t&& Wei. qa1mm- needs proof. We easily deduce from the Markov 
equation that 3 t xz. Equation (4.4) now forces 31 KL, K E L (3). Assume 3 1 L, 
then L I Ld1 = trace Ba. Hence, 

B2_ ( _)(mod3), 

i.e., B2 e F(3). Next, let 3 t L, then 3 1 K. It follows that 

Ba (O 1) or (0 1 )(mod3), 

i.e., Ba E F(3). Finally, 3 4 K implies Ba Z F(3) since x2zKd- 1 0 (3). This com- 
pletes the proof. 
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